INORGANIC MATERIALS: STRUCTURE AND PROPERTIES

Academic Year 2023/2024 - Teacher: Guglielmo Guido CONDORELLI

Expected Learning Outcomes

The course objective is to help students develop their knowledge and skills in the design, synthesis, and characterization methods of inorganic materials. They will learn the basics of material structures and their relationship with properties and applications. They will also be introduced to a wide range of traditional methods of synthesis of polycrystalline and single crystals inorganic materials.

Course Structure

This course is organized in lectures (6 CFUs) and laboratory work (2 CFUs) in order to give the opportunity to apply theoretical knowledge on simple practical cases.

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus. 

Detailed Course Content

Crystalline structures

Crystals. Lattices and basic set. Translation vectors. Unit cells and lattice parameters. The five two-dimensional lattices. Three-dimensional lattices: the 7 crystal systems and the 14 bravais lattices.

Simmetry. Point simmetry elements  and operations . Schonflies and Hermann-Mauguin notation.Crystallogaphic point groups. Plane groups and 2D traslations. 3D translational simmetry and space groups. Asymmetric unit, basic sets and crystallographic structures.

Lattice plane and directions. Miller Index.

Materials structures. Crystal lattices and spheres packing. Closed and not-closed packing. Coordination polyhedra. 

Metallic solid. HCP,  CCP  and BCC structures.  Main structures of metals and alloys.

Ceramic solids. Typical structures: Rock salt, Cesium Chloride, cadmium iodide, fluorite, AsNi, ZnS, TiO2, perovskites and spinels. Space group of the main structures. Structures of graphite and diamond

Crystallographic Softwares  (VESTA, Mercury).

Synthetic methods of materials:

Solid state syntheses: Introduction. Factors affecting reaction rates. Wagner’s model. Mixing methods. Co-precipitation. Combustion methods. Carbothermal reduction.

Liquid-solid syntheses: Precipitation from aqueous solutions. Sol-gel. Synthesis of zeolites. Precipitation from melts. Flux methods. Idrothermal and solvothermal methods. Growth of single crystal. Growth from solutions: gel methods. Growth from melts:  Czochralski and Bridgman-Stockbarger's methods. Zone melting. Verneuil flame fusion method.

 Gas-solid syntheses: Vapor phase transport. Liquid-assisted vapor phase syntheses. (VLS).

Structure modifications. Intercalation reaction. stage number.  Surface functionalization: covalent modification of semiconductors and oxides.

Physical vapor deposition of films: Evaporation and sputtering

Type of materials and applications 

Magnetic materials. Magnetic Properties. Effect of temperature: The Curie-Weiss law.Magnetic materials. Metals and alloys. Transition metal oxides. Manganites. Ferrites. Nanomagnets and molecular magnets.

Metals and alloys. Metal preparation. Alloys. Steel. Superelastic and shape memory alloys.

Open structure systems: metal orgaic framework (MOF). Intercalation compounds. Intercalates of graphite and TS2. Lithium batteries.

Laboratory activities .

1) Materials structures using the VESTA Sofftware 

2)Synthesis of ceramics through co-precipitation and solid state synthesis. Synthesis of CaMnO3 , La0.85Sr0.15MnO3 e La0.7Sr0.3MnO3 . XRD characterization.

3)Nanomaterial synthesis from solution. Magnetic Fe3O4 nanoparticle synthesis and magnetic separation. XRD characterization.

4) Surface modification. Functionalization of Fe3O4 nanoparticles with phosphonic acids.

5)Synthesis of Metal-Organic Framework (MOF) for envirmental applications. Synthesis of ZIF-8. FT-IR characterization.

6) Solution combustion syntheses.

7) FTIR characterization of monocrystalline Si. Quantitative determination of interstitial oxygen in CZ Si(100).

8)Sputtering of films. DC plasma sputtering of Au films.

Textbook Information

  1. On-line slides available on: http://studium.unict.it/
  2. Anthony R. West, Solid State Chemistry and its Applications, second edition  Wiley, 2014 or A. R. West ”Basic Solid State Chemistry and its Applications “ Wiley, 201
  3. C. Hammond “Introduzione alla cristallografia” Zanichelli, 1994
  4.   D. E. Sands “Introduction to Crystallography”   Dover Publication 1993

Course Planning

 SubjectsText References
1Reticoli cristallini in 2 e 3 dimensioniSlides delle lezioni; testo 3, capitoli 2 e 3; testo 4 capitolo1
2SimmetriaSlides delle lezioni, testo3 capitolo 4; testo 4, capitolo 2
3Direzioni e piani reticolariSlides delle lezioni testo 3, capitolo 5
4Impaccamenti di sfere e reticoli cristallinislides delle lezioni; testo 3, capitolo 1; testo 4, capitolo 7
5Principali strutture cristallineslides delle lezioni; testo 2 capitolo 1;testo 3 capitolo 1; testo 4, capitolo 7
6Reazioni allo stato solidoslides delle lezioni; testo 2, capitolo 4
7Sintesi da liquidoslides delle lezioni; testo 2, capitolo 4
8Crescita di cristalli singolislides delle lezioni; testo 2, capitolo 4
9Trasporto da fase vaporeslides delle lezioni; testo 2, capitolo 4
10Metodi PVD: evaporazioneslides delle lezioni
11Metodi PVD: sputteringslides delle lezioni
12Proprietà magnetiche dei materialislides delle lezioni; testo 2, capitolo 9
13Materiali magnetici e loro applicazionislides delle lezioni: testo 2, capitolo 9
14Nanomagneti e magneti molecolarislides delle lezioni
15Composti intercalari e sistemi a strutture aperteslides delle lezioni; testo 2, capitolo 4
16Leghe metalliche. Regole di solubilità e acciaislides delle lezioni
17Leghe superelastiche e a memoria di formaslides delle lezioni
18Esperienze di laboratorioslides delle lezioni

Learning Assessment

Examples of frequently asked questions and / or exercises

·         What is a crystal lattice

·         What are the allowed rotational symmetries for a crystal lattice

·         How lattice directions and planes are represented

·         The seven crystal systems and Bravais lattices

·         Describe solid-state synthesis methods

·         Describe the factors influencing nucleation and growth process in solid-state synthesis

·         Describe solution synthesis methods

·         Describe melt synthesis

·         Discuss the mechanisms determining ferromagnetic and antiferromagnetic order

·         Discuss the magnetic properties of ferrites

·         Discuss the magnetic properties of manganites

·         Discuss solubility rules in alloys.