MATHEMATICS 2
Academic Year 2021/2022 - 1° YearCredit Value: 6
Scientific field: MAT/05 - Mathematical analysis
Taught classes: 28 hours
Exercise: 24 hours
Term / Semester: 2°
Learning Objectives
The training objectives of the course are as follows:
Knowledge and understanding:
students will learn some basic mathematical concepts and will develop the skills of calculation and manipulation of the most common objects of Mathematical Analysis: among these, integrals for functions of one or several real variables, the differential equations and the differential calculus for real functions of two or several real variables.
Applying knowledge and understanding:
through examples related to applied sciences, the student will be able to appreciate the importance of Mathematical Analysis as an important modeling tool.
Making judgments:
students will be able to deal with some simple but significant methods of Mathematical Analysis with sufficient rigor to refine their logical skills. Many demonstrations will be presented in a schematic and intuitive way to engage students and encourage them to achieve the goal on their own.
Communication skills:
by studying Mathematical Analysis, students will learn to communicate with rigor and clarity both orally and in written form. They will learn that using a correct language is one of the most important means of clearly communicating any scientific topic, not only mathematics.
Learning skills:
students, especially the most willing, will be stimulated to deepen some topics, also through group work.
Course Structure
Lectures complemented by exercises
If the teaching is given in a mixed or remote way, the necessary changes may be introduced with respect to what was previously stated, in order to respect the program envisaged and reported in the syllabus.
Exams may take place online, depending on circumstances.
Detailed Course Content
Integral calculus for functions of one variable
Indefinite integral - Integration methods: integration by decomposition and sum, integration of rational functions, integration by parts, integration by change of variable - Definition of integral according to Riemann and its properties - Some classes of integrable functions - Definite integrals - Hints of theory of the Peano-Jordan measure - Geometric meaning of the Riemann integral - Fundamental theorem of integral calculus - Hints on generalized and improper integrals and their properties.
Differential calculus for functions of two or several variables
Recall of topology in the plane and in the euclidean n-dimensional space: internal points, external points and boundary points, open and closed sets, accumulation points and isolated points, bounded sets, compact sets, convex sets, connected sets by arcs, domain - Functions of several variables: limits and continuity - Differential calculus for functions of several variables: partial and directional derivative - Differential and differentiable functions - Higher order derivatives and Schwarz lemma - Differential operators: gradient, divergence, rotor, Laplacian - Differentiation theorem of composition of functions - Lagrange's theorem in R2 and characterization of functions with zero gradient in a region - Free extrema of a function of two variables and relative theorems - Search for absolute extrema on a compact set
Integral calculus for functions of two or several variables
Integral calculus for functions of several variables: double and triple integrals according to Riemann - Change of variables - Reduction formulas: Fubini's theorem - Integrals dependent on a parameter: Leibinz rule.
Ordinary differential equations
General information on differential equations - The Cauchy problem - First order differential equations - First order differential equations with separable variables - Cauchy's theorem on the existence and uniqueness of the solution - Second order linear differential equations with constant coefficients - Applications to the study of free, damped and forced oscillations.
Textbook Information
- C.D. Pagani, S. Salsa: Analisi Matematica 1, Zanichelli , seconda edizione, 2015
- C.D. Pagani, S. Salsa: Analisi Matematica 2, Zanichelli , seconda edizione, 2016
- Fanciullo M. S., Giacobbe A., Raciti F., Esercizi di Analisi Matematica 2, Medical Books,2013.
- T. Caponetto, G. Catania, Esercizi di Analisi Matematica 1 (solo il volume sugli integrali) , CULC ,Catania